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Società Italiana di Fisica
Springer-Verlag 2001

Universality in passively advected hydrodynamic fields: the case
of a passive vector with pressure

R. Benzi1, L. Biferale1,a, and F. Toschi1,2

1 Dipartimento di Fisica and INFM, Universita’ di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy
2 University of Twente, Department of Applied Physics, Enschede, The Netherlands

Received 4 July 2001

Abstract. Universality of statistical properties of passive quantities advected by turbulent velocity fields
at changing the passive forcing mechanism is discussed. In particular, we concentrate on the statistical
properties of an hydrodynamic system with pressure. We present theoretical arguments and preliminary
numerical results which show that the fluxes of passive vector field and of the velocity field have the same
scaling behavior. By exploiting such a property, we propose a way to compute the anomalous exponents
of three dimensional turbulent velocity fields. Our findings are in agreement within 5% with experimental
values of the anomalous exponents.
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1 Introduction

Recent theoretical and numerical studies of passive quan-
tities linearly advected by either stochastic [1–5] or true
turbulent Navier-Stokes velocity fields [6] have focused on
the important problem of the “zero-mode” dominance of
the statistical properties of the passive field in the inertial
range.

The field may be an advected scalar θ(x, t), with the
equation of motion

∂θ

∂t
+ u · ∇θ = κ∇2θ + fθ, (1)

or a vector, like a magnetic field B(x, t) satisfying [7]

∂B

∂t
+ u · ∇B = B · ∇u+ κ∇2B + fB. (2)

Zero-mode dominance is of crucial importance because
naturally explains the deviations from dimensional pre-
dictions for scaling properties and some universality with
respect to the forcing mechanism, i.e. some independence
of scaling properties from the large scale input of passive
field.

In particular, for the special class of Kraichnan-like
problems for scalar and vectors with Gaussian and white-
in-time velocity field and external forcing [1–4], one can
prove that the equal time (passive) correlation functions
are dominated, in the inertial range, by the zero modes of
the linear operator describing the advection by the Gaus-
sian velocity field. Anomalous scaling comes from the non-
trivial scaling properties of the null-space of the inertial
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operator. Universality comes from the fact that only pref-
actor of the zero modes feel the large scale boundary con-
ditions, while the power law behavior is fixed by the iner-
tial operator. As a consequence of zero-mode dominance in
the inertial range we also have that all forcing-dependent
contributions are sub-dominant and therefore some degree
of universality with respect to the forcing mechanism.

Recently, numerical evidences that zero modes show
up also in true passive models, advected by realistic non-
Gaussian and non white-in-time velocity fields, have been
presented for both passive scalars in the inverse cascade
regime of a two dimensional flow [6] and shell models for
passive scalars [8]. Such findings give strong support to the
idea that statistics of quantities linearly advected by true
Navier-Stokes fields may show some universality proper-
ties with respect to the forcing mechanism too. In partic-
ular, the problem of a passive with a mean shear studied
in [6] shows that zero-modes remain dominant with re-
spect to the forcing contributions also in presence of a
correlation between forcing and velocity advecting field,
i.e. some degree of universality still holds. In this paper
we want to investigate how far one can push the idea of
universality with respect to the forcing mechanism for the
particular case of the advection of a passive field with
pressure [5] advected by the true Navier-Stokes turbu-
lent velocity field. Such a model was initially proposed
in [5] in order to understand the importance of non-local
contributions, induced by the pressure term, in the zero-
modes structure of the advecting operator. Here, we want
to show and study another important striking feature of
the model, i.e. its property to describe either a linear or
non-linear evolution depending on the correlation between
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the passive forcing and the advecting velocity fields. More-
over, when the passive evolution is indeed non-linear, the
passive field and the velocity fields coincide, i.e. the trans-
ported field and the advecting field are looked in both their
spatial and temporal evolution. In other words, we have
a linear model which may become non-linear by changing
the correlation properties between the external forcing and
the advecting velocity field.

In this paper we address two problems. First, we want
to understand the degree of universality in the scaling
properties of the linear problem at changing the external
forcing.

Second, by using the similarity between the non-linear
Navier-Stokes equations and the linear advecting-diffusive
equations for the passive field (see below) we propose a
way to compute the anomalous exponents of homogeneous
and isotropic turbulence which takes advantage of recent
results in the theory of passive scalar advected by Gaus-
sian, white in time velocity fields [1,2].

The paper is organized as follows. In Section 2 we
present the equations for the passive field with pressure.
in Section 3 we present some numerical experiments made
on the equivalent shell model for the passive field and we
discuss to which extent we may expect strong universality
with respect to the forcing mechanism in this model. In
particular we discuss why we expect, and verify numeri-
cally in the shell model case, that passive fluxes posses a
much better degree of universality than passive structure
functions. In Section 4 we used the, supposed, universality
of passive flux in order to derive a functional constraint
for the velocity statistics. Conclusions follow in Section 5.

2 The model

Let us consider the incompressible Navier-Stokes (NS)
equations:

∂tUi + Uj∂jUi = −∂ip+ ν∆Ui + fi (3)

where notation follows the usual meaning and the forc-
ing term fi is supposed to produce a stationary homoge-
neous and isotropic turbulence. We next consider a vector
field W , divergence-less (i.e. ∂iWi = 0) and satisfying a
transport-like equation:

∂tWi + Uj∂jWi = −∂ipw + ν∆Wi + gi (4)

where the “pressure” term pw is computed via the Poisson
equation:

∂iUj∂jWi = −∆pw. (5)

Our main interest here is to describe the statistical prop-
erties of W and their relation with the scaling properties
of U ; we are not aware of any system in nature which may
be described by this passive field with pressure.

Let us introduce the anomalous exponents for U and
W . We shall denote by ζ(p) the scaling exponents of the
longitudinal structure function:

Sp(r) = 〈(δrU)p〉 ∼ rζ(p)

where δrU = (U(x + r) − U(x)) · r̂ and 〈 · 〉 stands for
ensemble averaging. In the same way, we introduce σ(p) as
the scaling exponents of longitudinal linear-field structure
functions:

T p(r) = 〈(δrW )p〉 ∼ rσ(p)

where δrW = (W (x+r)−W (x)) · r̂. Finally, we consider
the scaling exponents s(p) for the W flux defined as:

〈(δrU)p(δrW )2p〉 ∼ rs(p). (6)

Let us remark that equation (4) implies s(1) = 1 which
follows from the analogous of the “4/5” Kolmogorov equa-
tion for W [9], namely

〈δrU(δrW )2〉 ∼ Nr (7)

where N is the mean rate of W dissipation. Our anal-
ysis is aimed at understanding the relationship, if any,
among the anomalous exponents ζ(p), σ(p), s(p). We are
now able to pose our problem in a quantitative way. Let us
first consider the very simple case fi = gi. By subtracting
equation (3) from equation (4) we obtain:

∂tφi + Uj∂jφi = −∂iπ + ν∆φi (8)

where φ = W − U and π = (p − pw). By equation (8)
it immediately follows that the space average Eφ of φ2 =∫

dxφi(x)φi(x) satisfies the equation:

∂tEφ = −εφ (9)

where εφ is the mean rate of dissipation of Eφ. Thus, for
long enough time, the field φi goes to zero and Wi = Ui,
identically.

In this paper we want to understand to which extent
the statistical properties of (4) are universal with respect
to the forcing mechanism. If a strongly universality holds,
then we should have independently of the forcing mecha-
nism

σ(p) = ζ(p), s(p) = ζ(3p) (10)

even when fi and gi are uncorrelated or weakly corre-
lated fields. Let us notice that in the previous equality we
have assumed that velocity flux possesses the same scal-
ing properties of the velocity field, as always verified in
all numerical and experimental data. We do not know any
rigorous argument against or in favor of universality for
the scaling properties of (4). One may argue that if the
forcing mechanisms fi and gi are weakly correlated – or
independent – and confined only to large scales than the
statistical properties ofW may not be strongly influenced
by the forcing itself. In the latter case the universality of
the scaling exponents of W should be achieved by the
same zero-modes mechanisms previously discussed for the
passive scalar with independent forcing. Whether this sup-
posed universality can be pushed until the very extreme
case of fully correlated systems, implying the equalities
(10) is a matter of discussion. There is clearly a physi-
cal relevant question here: we need to understand the im-
portance of external forcing mechanism in the statistical
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properties of the advected field. This question, of course,
arises not only for the passive vector with pressure but
also in any linear advection problem, i.e. passive scalars
or passive magnetic fields. In the case of the passive vector
with pressure the question assumes also another interest
because of the possibility to push the advected field to fol-
low the velocity field for some particular external forcing.

We consider an important point to investigate this
problem in details and in the next section, we present
some numerical results showing that universality holds for
fluxes, i.e. s(p) = ζ(3p). Passive structure functions seems
to be less universal than fluxes although strong boundary
effects (both ultraviolet and infrared) do not allow a pre-
cise statement.

3 Numerical results

Although a direct numerical tests of the statistical prop-
erties (4) is possible for the NS equations, we will limit in
this paper to a direct numerical investigation in the frame-
work of shell models for three dimensional turbulence.

Shell models for turbulent energy cascade have proved
to share many statistical properties with both turbulent
three dimensional velocity fields [9–11] and with passive
linearly advected quantities [12]. Let us introduces a set
of wavenumber kn = λnk0 with n = 0, . . . , N and the
inter-shell ratio fixed to λ = 2. The shell-velocity variables
un(t) must be understood as the velocity fluctuation over
a distances rn = k−1

n . We also introduce the linear-field
shell variables wn(t) defined on the same sets of discrete
wavenumber. It is possible to write down a set of coupled
ODEs for the time evolution of un(t) and wn(t) which
mimics the velocity and the passive turbulent evolution
(see below).

We know that zero modes are at works in shell mod-
els for linearly advected quantities, exactly like in the
true linear hydrodynamical problems. Indeed, it is possible
to prove analytically that shell models for passive scalar
advected by Gaussian and white-in-time velocity (shell)
fields have intermittent corrections dominated by the null
space of the linear finite-dimensional advecting operator
[13,14]. Recently, it has also been shown that shell models
for passive scalar advection, i.e. passive shells advected by
shell fields arising from a shell model for the velocity, have
zero modes dominance for the scaling properties in the in-
ertial shells, exactly as it is shown for the true passive
scalar [6].

We have therefore, exactly the analytical/phenomeno-
logical framework useful to check to which extent the scal-
ing properties of the linear hydrodynamical problem are
forcing independent.

In the shell model framework the very meaning
of pressure is absent. The equivalent of our linear-
hydrodynamical model (4) will become a shell field wn(t),
linearly advected by the shell model velocity fields un(t),
conserving the energy

∑
n |wn|2, and such that when

fn = gn we have, for time large enough, wn(t) = un(t).
It is possible to write down such a coupled set of ODEs

for all shell models. Here we consider the case of Sabra

model [11]. We obtain:

(
d
dt

+ νk2
n)un = i(knu∗n+1un+2 + bkn−1un+1u

∗
n−1

+ (1 + b)kn−2un−2un−1) + fn (11)

(
d
dt

+ νk2
n)wn = i(knu∗n+1wn+2 + bkn−1wn+1u

∗
n−1

+ kn−2wn−2un−1 + bkn−2wn−1un−2) + gn (12)

where the non linear term of un evolution and the linear
advection part of wn evolution have the only free param-
eter b. Note that if we put wn = un in equation (12),
then equation (12) becomes equivalent to equation (11).
It is known that in order to have a realistic intermittent
behavior for un one has to chose −1 < b < 0 [11].

Equations (11) and (12) preserve velocity energy,Eu ≡∑
n |un|2, and passive energy, Ew ≡

∑
n |wn|2, in the limit

of zero viscosity and zero forcing.
It is easy to show that if fn = gn in the above equations

than for long enough time wn(t) ≡ un(t).
The universality issue, as discussed in the previous sec-

tion, consists now in studying the scaling properties of wn
at changing its forcing mechanism.

Let us define the scaling exponents for the velocity
flux,

Πn = =[(knun+2u
∗
n+1u

∗
n) + (1 + b)kn−1(un+1u

∗
nu
∗
j−1)]

and passive flux,

Qn = =[(knwn+2u
∗
n+1w

∗
n) + kn−1(wn+1u

∗
nw
∗
n−1)

+ kn−1b(wn+1w
∗
nu
∗
n−1)]

as:

SpΠ(n) ≡ 〈|Πn|p〉 ∼ kp−ζ(3p)n T pQ(n) ≡ 〈|Qn|p〉 ∼ kp−s(p)n

(13)

where the equivalent of 4/5 law for the two shell models
gives ζ(3) = s(1) = 1, [15]. The structure functions are
defined as follows:

Spu(n) = 〈|un|p〉 ∼ k−ζ(p)n T pw(n) = 〈|wn|p〉 ∼ k−σ(p)
n .

(14)

In the following we present some numerical tests done with
N = 25 shells νu = νw = 5 × 10−7 and different kind of
forcing mechanisms.

Forcing have been chosen such as to go from a weakly
correlated situation where gn(t) has some large scale de-
pendency from the un(t) dynamics to a fully uncorrelated
case with gn(t) given by a random process.

In Figure 1 we present the typical scaling laws one
obtains for fluxes of both fields, for different large scale
passive-forcing. In all simulations we have always taken
the same velocity forcing concentrated on the largest shell
and constant: fn = (1 + i)Cuδn,1, with Cu = 0.01. We
have compared statistical properties of the passive fields
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Fig. 1. Log-log plot of velocity and passive fluxes and structure functions for second order moment, p = 2 versus the scale
kn. Curves represent from above: (�) velocity flux S2

Π(n). Passive flux, T 2
Q(n), for forcing case (A) (×); forcing case (B) (+);

forcing case (C) (∗). Fluxes are always multiplied by the normalising factor k−2
n . Curves have been shifted along the y-axis for

the sake of clarity
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Fig. 2. Log-log plot of second order velocity flux, p = 2, and sixth order passive structure functions, versus the scale kn. Curves
represent from above: (�) velocity flux S2

Π(n); (×) passive structure function T 6
w(n) forcing case (A); (+) passive structure

function T 6
w(n) forcing case (B); (∗) passive structure function T 6

w(n) forcing case (C). Notice the strong ultraviolet and infrared
effects in the passive structure functions. Notice also that for the fully independent forcing, case (C), the passive structure
functions shows a larger intermittent slope at small scales.

using three different choices for the passive forcing. In case
(A) we had a time-dependent forcing such as to impose a
constant passive energy input on the first shell:

A : gn(t) = δn,1(1 + i)/w∗1(t).

In case (B) we fixed the first passive shell to have the
same amplitude |w1| = const. but leaving its phase to
evolve according to its own dynamics.

B : gn(t)→ |w1(t)| = 1 ∀ t.
In case (C) we took a forcing concentrated on the first
shell, with constant amplitude, |g1(t)| = G1 but random
independent phases

C : gn(t) = δn,1G1eiθ(t)

where 〈θ(t)θ(t′)〉 ∝ δ(t− t′).
Let us notice that forcing of cases (A) and (B) have

some (weak) correlation with the advecting velocity field,
while case (C) is independent of un.

As one can see all flux curves superpose perfectly in
the inertial range. Let us notice that the extremely small
errors on the scaling of two fluxes allows us to support
the statement Πn ∼ Qn with very high accuracy inde-
pendently on the forcing mechanism. The scaling of pas-
sive structure functions suffers of larger error bars, due
to a less smooth matching between inertial and infra-red
properties [16]. The qualitative trend is, anyhow, toward
a more intermittent behavior of the passive fields with re-
spect to the velocity field (see Fig. 2). In the latter case
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Table 1. Scaling exponents of both flux and structure function of the passive field and of flux of velocity field at changing the
order of the moment p = 2, 4, 6, 8, 10 and for different large scale forcing cases (A-C). Notice the high precision in the agreement
between the passive flux at changing the large-scale forcing (columns 1–4). Passive structure functions (columns 5–7) are less
accurate due to the presence of a strong bottleneck at small scales. Errors are given by the numbers in brackets and refers to
the last digit. Errors are estimated from the fluctuations of the local logarithmic derivatives in the shell range n = 3, . . . , 15.

p k
−p/3
n S

p/3
Π (n) k

−p/3
n T

p/3
Q (x) (A) k

−p/3
n T

p/3
Q (n) (B) k

−p/3
n T

p/3
Q (n) (C) T pw(n) (A) T pw(n) (B) T pw(n) (C)

2 0.712 (3) 0.711 (3) 0.711 (2) 0.710 (2) 0.67 (3) 0.67 (3) 0.66 (3)

4 1.263 (6) 1.264 (7) 1.264 (6) 1.266 (3) 1.20 (6) 1.28 (4) 1.13 (7)

6 1.745 (8) 1.741 (7) 1.74 (1) 1.745 (5) 1.6 (1) 1.67 (8) 1.4 (1)

8 2.18 (2) 2.18 (2) 2.19 (2) 2.18 (2) 2.0 (2) 2.1 (1) 1.6 (2)

10 2.60 (2) 2.58 (3) 2.61 (2) 2.57 (4) 2.3 (2) 2.6 (2) 1.9 (3)
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Fig. 3. Typical time evolution of the total velocity energy Eu(t) (solid) and total passive energy Ew(t) (dashed) (case A).
Curves have been shifted along the y-axis for the sake of clarity.
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Fig. 4. Scatter plot of Eu(t) versus Ew(t) with forcing of case (A). Notice that the two fields have not perfect correlation.

we would have an indication that passive structure func-
tions are much more sensible to the boundary conditions
than the fluxes moments, implying also a weaker degree
of universality with respect to the forcing mechanism.

In Table 1 we quantify our finding in all three forcing
cases (A-C) showing the best fits and their errors for all
scaling exponents of both fluxes and structure functions.
In Figure 3, we show two typical time evolution for the

total energies of velocity, Eu(t), and passive, Ew(t) for the
case with two different – but correlated – forcing, fn 6= gn.
Although some correlation between Eu(t) and Ew(t) is
observed, we are very far from the trivial exact correlated
case one would have obtained choosing fn ≡ gn. The non
trivial correlations between the two energy can be seen in
the Figure 4 where we plot, for a typical trajectory, Eu
versus Ew.
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Fig. 5. Scaling exponents of velocity flux and passive flux for two different values of the parameter b in the “Sabra” shell model
equations (11). � corresponds to the velocity flux exponents, ζ(p/3), and the dashed curves to the passive flux exponents, σ(p).
Above: the case with b = −0.4, below the case with b = −0.6. Notice that despite the remarkable change in the intermittent
properties the fluxes follow each other perfectly.

In order to test the robustness of previous results
we repeated the numerical experiments with a different
value of the free parameter b in the sabra shell model
equations (11). It is known that at changing b the
intermittency of the velocity field changes.

In Figure 5 we plot the ζ(3p) and s(p) curves for both
values of b = −0.4 and b = −0.6. The agreement for each
b values between the two fluxes is again perfect despite
the fact that at varying b we have different degrees of
intermittency.

One could question why there is such clear evidence
that s(p) = ζ(3p), i.e. the scaling properties of two
fluxes are identical, while passive structure functions seem
to be more intermittent than the corresponding veloc-
ity structure functions. One possible explanation goes as
follows. By exploiting the equation of motion one may
always derives homogeneous constraints for moments of
quantities like Fn = unwn′wn′′ in the inertial range,
i.e. where forcing is not directly acting. In particular
by writing the stationary condition for quantities like
〈Fn1Fn2 · · ·Fnp−1wkwk′〉 one obtains an homogeneous
constraints involving only Fn observable:

d
dt
〈Fn1Fn2 · · ·Fnp−1wkwk′〉 = O

m1m2···mp

n1n2···np−1,k,k′

× 〈Fm1Fm2 · · ·Fmp
〉 = 0 (15)

where the operator O
m1m2···mp

n1n2···np−1,k,k′
is given from the

equation of motion and it is independent of the correla-
tion between un and wn and of the chosen forcing gn and
fn. On the other hands no homogeneous closed constraints
can ever be found for moments of quantities involving only
simultaneous correlations of passive fields, wn. In order
to have homogeneous expressions for observable made of
only passive fields one has to give (or to guess) an ex-
plicit form for the correlation between wn and un. Thus

one may think to obtain an equation similar to (15) but
now with the inertial operator explicitly dependent on the
given correlation between the two fields. In the latter case
the dependency of the passive field on the statistical prop-
erties of the velocity field and of the correlation with the
external forcing may lead to non-universal scaling proper-
ties.

On the other hand, one can also argue that the ob-
served lack of universality is not Reynolds independent
and that at Reynolds large enough some strong inde-
pendence from the forcing mechanism (zero-modes dom-
inance) would be recovered also for passive structure
functions. The latter scenario is what happens in true
passive scalars with a correlation between forcing and ve-
locity field (see the case of a passive scalar with shear
[17]) where the existence of sub-leading non-homogeneous
terms induced by the forcing mechanism may spoil the
scaling behavior of the zero-modes at finite Reynolds num-
bers.

4 An approximate computation of the scaling
exponents

The results so far discussed, make us rather confident
that the two fluxes of equation (4) and of Navier Stokes
equation (3) have the same statistical fluctuations.

We want now to understand whether it is possible to
use the above results to obtain useful informations on the
scaling exponents ζ(p).

The main idea, discussed in this section, is the follow-
ing. We assume that the velocity field can be described
by the (unknown) multifractal probability distribution
P (δrU). We want to compute the probability distribu-
tion of the passive vector, P (δrW ). The equation (4) will
induce a functional relation between the two probability
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distributions. By requiring that the scaling properties of
W flux are the same of U flux, we introduce an (infinite)
set of equations for the probability P (δrU) whose solu-
tions will fix its scaling. In order to simplify the above
procedure, the approach we want to follow is based on a
suitable set of approximations and assumptions whose va-
lidity we are not able to prove rigorously, only a posteriori
we will be able to judge the goodness of our calculation.

Let us suppose that the field U in equation (4) is char-
acterized by a multifractal spectrum D(h). As it is well
known, in such a case the anomalous exponents of U are
given by the expression ζ(p) = infh(ph + 3 − D(h)) and
the probability distribution of δrU is given by [18]:

P (δrU) ∝
∫

dµ(h)r3−D(h) exp
[
− (δrU)2

2U0r2h

]
(16)

where U0 represents the variance of the large scale velocity
field, which is supposed to be Gaussian. Equation (16) tells
us that for each value of r we may consider δrU as the
superposition of Gaussian field with variance U0r

2h and
probability r3−D(h) associated to each value of h. We can
then consider to solve equation (4) in the limit where U
is a “weighted” superposition of Gaussian random fields
(as expressed by (16)).

The equivalence between the statistical properties of
the Navier-Stokes field and of the linear field implies that
both fluxes have the same scaling:

〈|(δrU)(δrW )2|p〉 ∼ 〈|δrU |3p〉. (17)

We want to exploit the above identity in order to derive
a constraint for the D(h) spectrum.

We can rewrite the term 〈(δrU(δrW )2)p〉 as follows:

〈(δrU(δrW )2)p〉 ∼
∫

dhd(δrU)r3−D(h)

× P (δrU, h)(δrU)p〈(δrW )2p|δrU, h〉 (18)

where with 〈(δrW )2p|δrU, h〉 we mean the average of the
linear field conditioned to the advecting velocity field
and P (δrU, h) ≡ exp

[
− (δrU)2

2U0r2h

]
. Up to equation (18) we

did not used any approximation. The computation of
〈(δrW )2p|δrU, h〉 is the most difficult one and we shall
introduce several approximations in order to make it fea-
sible. In particular we want to compute 〈(δrW )2p|δrU, h〉
using a surrogate δ-correlated and Gaussian velocity field.
In other words will make the first approximation that in
order to compute the conditional average we may assume
that the multifractal velocity field, as defined by equation
(16), is the “weighted” superposition of independent
Gaussian random fields δ-correlated in time.

In order to compute left hand side of equation (18), we
solve equation (4) for fixed exponent h of the random field
U and then average the results over h with probability
r3−D(h). In doing such an average we notice that in
order to mimic the advection by a true Navier-Stokes
field (not δ-correlated in time) with scaling δrU ∼ rh we

need a δ-correlated surrogate with scaling δrUs ∼ r
1+h

2 ,
because of dimensions carried by the delta-functions.
As a consequence we are going to be interested only
in exponents for the surrogate Us field in the range
H = 1+h

2 = [1/2, 1], which correspond to the range
h : [0, 1] for the true turbulent field. Let us notice that a
K41 field has a correspondent δ-correlated field scaling as
δrUs ∼ r2/3.

We now want to exploit our δ-correlated ansatz by
writing:

〈(δrW )2p|δrU, h〉 ∼ rp(1−h)+ρ2p(1+h) (19)

where we have introduced the anomaly ρ2p(2H) of the
linear field W advected by a δ-correlated velocity field
δrUs ∼ rH , namely:

〈(δrW )2p)〉H ∼ rp(2−2H)+ρ2p(2H). (20)

In equation (20) we have taken into account the dimen-
sional consistency relation 2H = 1+h. Notice that for the
δ-correlated case one can prove that in the isotropic sec-
tor we have ρ2(2H) = 0, i.e. the second order correlation
function has not anomalous scaling.

Our definition gives:

〈δrU(δrW )2〉H ∼ rHr1−H = r (21)

i.e, our ansatz on the function 〈(δrW )2p|δrU, h〉 implies
that we are averaging over all possible singularity H with
the constraint 〈δrU(δrW )2〉H ∼ r, i.e. we impose the
equivalent of the 4/5 law in our closure.

We can now use the relation of statistical identity be-
tween fluxes, ζ(3p) = s(p), in order to obtain an equation
for D(h). We have:∫

dµ(h)rph+p(1−h)−ρ2p(1+h)+3−D(h) ∼ rζ(3p) (22)

which gives:

inf
h

[p− ρ2p(1 + h) + 3−D(h)] = inf
h

[3ph+ 3−D(h)] .

(23)

If we are able to compute the anomalous correction ρ2p

(of the δ-correlated problem), equation (23) becomes a
functional equation for D(h) whose solution gives us the
anomalous exponents ζ(p) within the set of approximation
discussed above. Let us notice that (23) is consistent with
the known result τ(1) = s(1) = 0. Let us also remark
that as soon as we introduce any smoothing in the time
dependency of U the equation (23) may be no longer valid
and we should reconsider the averaging procedure in a
more suitable way.

The computation of the anomalous exponents ρ2p is a
feasible but difficult task for equation (4) because of the
condition ∂iWi = 0. In principle, the computation can
be done in perturbation theory following the analog of
the passive scalar case [2]. Only the exponents in different
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Fig. 6. Comparison between the scaling exponents computed by equation (23) using: numerical results for the passive scalar
[17] (solid curve); the Kraichan formula for the passive scalar [1] (dashed curve). Experimental data (+) are given with their
error bars.

anisotropic sectors for the second order correlation func-
tion have been, up to now, computed. However, in order
to understand the quality of the approximations so far in-
troduced to derive equation (23), at least for three dimen-
sional isotropic and homogeneous turbulence, we can use
the numerical values of ρ4(1+h) and ρ6(1+h) as recently
computed numerically for the passive scalar model [19],
hoping that the introduction of the pressure term does
not change too much the scaling exponents [20].

In order to find a solution of (23), we simply assume
that D(h) can be parameterized by using the expression
D(h) = d0(1−x+x ln(x)) where x = (h−h0)/(d0log(β−1))
which corresponds to a log-Poisson distribution for the
multifractal model. We use a log-Poisson formula because
we know that it parameterize particularly well the exper-
imental data [21,22]. Because d0 is fixed by the condi-
tion ζ(3) = 1, we are left with the problem to find β
and h0 by using equation (23) for p = 2 and p = 3.
Solving equation (23) for β and h0 gives β = 0.781 and
h0 = 0.14. In Figure 6 we show the estimated values of
ζ(p) for p = 1, ..12 against the experimental findings for
homogeneous and isotropic turbulence. We note that the
estimate based on (23) is rather accurate with an error
not greater than 5%. We argue that such a small error
shows that our approach, within the limitation and the
approximations previously discussed, looks promising as
an useful tool to compute the anomalous exponents.

In order to test the sensitivity of (23) to the values of
ρ4(1+h) and ρ6(1+h), it is interesting to use the anoma-
lous exponents ρ4 and ρ6 given by Kraichnan’ formula for
D = 3. In this case the solution of (23) gives β = 0.813
and h0 = 0.21 and the corresponding values of ζ(p) are
also plotted in Figure 6. Although there are not big dif-
ferences between exponents obtained using the Kraichnan
formula and those obtained by using the correct numer-
ical results, the agreement with the experimental data is
definitely better in the latter case.

5 Conclusions

In this paper we discussed several properties character-
izing the statistical behavior of a divergence-less vector
field passively advected by an homogeneous and isotropic
turbulent field. We can summarize our findings in the fol-
lowing way. (i) We present some theoretical arguments
which supports the statement that the flux of passive vec-
tor field should have the same statistical properties of
the flux of an homogeneous and isotropic turbulent field.
(ii) We generalize the concept of divergence-less vector
field to shell models and by using detailed numerical sim-
ulations we provide evidence that the anomalous scaling
exponents of the passive vector flux and of the non lin-
ear shell model flux are the same with very high accuracy.
(iii) We propose a self consistent approach to compute
the anomalous exponents in homogeneous and isotropic
turbulence by using the properties previously discussed.
In particular, we have been able to define a functional
equation for D(h) within a suitable set of approximations.
(iv) By assuming that the pressure term does not change
dramatically the numerical values of the anomalous ex-
ponents for the divergence-less vector field advected by
a Gaussian isotropic δ-correlated random field, we have
been able to find an approximate solution of the func-
tional equation for D(h) which compares rather well to
known experimental data.

Before closing we want to discuss a generalization of
the model (4) which we consider interesting for further
studies. Let us consider the following set of equations:

∂tUi + Uj∇jUi + λWj∇jUi = −∇ipu + ν∆Ui + fi (24)

∂tWi + Uj∇jWi + λWj∇jWi = −∇ipw + ν∆Wi + gi
(25)

where we assumed that ∂iUi = ∂iWi = 0. It is interesting
to notice that the vector field Zλ = U +λW satisfies the
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Navier Stokes equations and that equations (24) and (25)
corresponds to (3) and (4) for λ = 0.

Finally we want to remark that equation (4) is an use-
ful tool to understand the role played by coherent struc-
ture on the anomalous scaling in both two dimensional
and three dimensional turbulence. All our findings suggest
that a systematic study of equation (4) looks extremely
promising in order to derive a new approach in under-
standing intermittency and estimating anomalous scaling
in Navier-Stokes equations.
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